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Abstract. Disclaimer: some sections of this document were lifted from the
internet, but I no longer remember which ones.

1. Precursors of Archimedes

1.1. Pythagorean Irrational Numbers. The Pythagoreans (ca. 500 B.C.)
proved the existence of irrational numbers in the form of “incommensurable quan-
tities”. This tore at the fabric of their world view, based on the supremacy of whole
numbers, and it is legend that the demonstrator of irrational numbers was thrown
overboard at sea.

1.2. Zeno’s Paradoxes. Zeno (ca. 450 B.C.) developed his famous “paradoxes of
motion”.

1.2.1. The Dichotomy. The first paradox asserts the non-existence of motion on
the grounds that which is in locomotion must arrive at the half-way stage before it
arrives at the goal.

1.2.2. Achilles and the Tortoise. The second paradox asserts that it is impossible
for Achilles to overtake the tortoise when pursuing it, for he must first reach a point
where the tortoise had been, but the tortoise had in the meantime moved forward.

1.2.3. The Arrow. The third paradox is that the flying arrow is at rest, which result
follows from the assumption that time is composed of moments.

1.2.4. The Stadium. The fourth paradox concerns bodies which move alongside
bodies in the stadium from opposite directions, from which it follows, according to
Zeno, that half the time is equal to its double.

1.3. Eudoxus Method of Exhaustion. Eudoxus (ca. 370 B.C.) is remembered
for two major mathematical contributions: the Theory of Proportion, which filled
the gaps in the Pythagorean theories created by the existence of incommensurable
quantities, and the Method of Exhaustion, which dealt with Zeno’s Paradoxes. This
method is based on the proposition: If from any magnitude there be subtracted a
part not less than its half, from the remainder another part not less than its half, and
so on, there will at length remain a magnitude less than any preassigned magnitude
of the same kind.

Archimedes credits Eudoxus with applying this method to find that the volume
of “any cone is on third part of the cylinder which has the same base with the cone
and equal height.”
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1.4. Euclid’s Elements. Euclid of Alexandria (ca. 300 B.C.) wrote The Elements,
which may be the second most published book in history (after the Bible). The
work consists of thirteen books, summarizing much of the basic mathematics of the
time, spanning plane and solid geometry, number theory, and irrational numbers.

2. Results from Euclid

Result 1. The circumferences of two circles are to each other as their diameters.

Using modern notation, this says that if we are given two circles with diameters
D1 and D2, and circumferences C1 and C2, then

C1

C2
=

D1

D2
, whence

C1

D1
=

C2

D2
.

From this, one may conclude that for any given circle, the ratio between the cir-
cumference and the diameter is a constant:

C

D
= p, so C = pD.

We shall call p the circumference constant.

Result 2. The areas of two circles are to each other as the squares of their diam-
eters.

That is, if A1 and A2 represent the area of circles with diameters D1 and D2,
then

A1

A2
=

D2
1

D2
2

, whence
A1

D2
1

=
A2

D2
2

,

which says that there is an area constant for any circle:
A

D2
= k, so A = kD2.

However, Euclid doesn’t mention, and possibly doesn’t realize, that p and k are
related.

Result 3. The volumes of two spheres are to each other as the cubes of their
diameters.

Thus if V1 and V2 are the volumes of spheres of diameter D1 and D2, then

V1

V2
=

D3
1

D3
2

, whence
V1

D3
1

=
V2

D3
2

;

again, one sees that, for again given sphere, there is a volume constant m such that
V

D3
= m, so V = mD3.

Note that in each of these three cases (circumference, area, volume), the original
statements by Euclid compare like units (e.g. length is to length as area is to area),
whereas the modern tendency is to compare aspects of the same object (e.g. area
is to length squared).
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3. Measurement of a Circle

Proposition 1. The area of any circle is equal to a right-angled triangle in which
one of the sides about the right angle is equal to the radius, and the other to the
circumference, of the circle.

Let be C be the circumference, r the radius, and A the area of the circle. Let
T be the area of a right triangle with legs of length r and C. Then T = 1

2rC.
Archimedes claims that A = T , so A = 1

2rC.

Lemma 1. Let h be the apothem and let Q be the perimeter of a regular polygon.
Then the area of the polygon is

P =
1
2
hQ.

Proof. Suppose the polygon has n sides, each of length b. Clearly Q = nb. Then
the area is subdivided into n triangles of base b and height h, so

P = n(
1
2
hb) =

1
2
hQ.

�

Lemma 2. Consider a circle of area A and let ε > 0. Then there exists an inscribed
polygon with area P1 and a circumscribed polygon with area P2 such that

A− ε < P1 < A < P2 < A + ε.

Proof. Archimedes simply says: “Inscribe a square, then bisect the arcs, then bisect
(if necessary) the halves and so on, until the sides of the inscribed polygon whose
angular points are the points of the division subtend segments whose sum is less
than the excess of the area of the circle over the triangle.” �

Proof of Proposition. By double reductio ad absurdum.
Suppose that A > T . Then A − T > 0, so there exists an inscribed regular

polygon with area P such that A−P < A− T . Thus P > T . If Q is the perimeter
and h the apothem of the polygon, we have

P =
1
2
hQ <

1
2
rC = T,

a contradiction.
On the other hand, suppose that A < T . Then T − A > 0, so there exists

a circumscribed polygon with area P such that P − A < T − A. Thus P < T .
However, if Q is the perimeter and h the apothem of the polygon, we have

P =
1
2
hQ >

1
2
rC = T,

a contradiction.
Therefore, as Archimedes writes, “since then the area of the circle is neither

greater nor less than [the area of the triangle], it is equal to it.” �
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Proposition 2. The ratio of the circumference of any circle to its diameter is less
the 3 1

7 but greater than 3 10
71 .

Proof. Inscribe a hexagon. Compute the area:

π =
C

D
>

Q

D
=

6r

2r
= 3.

Archimedes next doubles the number of vertices to obtain a regular dodecagon.
The computation of its area requires accurate extraction of

√
3, which Archimedes

estimates as (
1.732026 ≈

)265
153

<
√

3 <
1351
780

(
≈ 1.732051

)
,

which is impressively close. The Archimedes continues with 24, 48, and finally 96
sides, at each stage extracting more sophisticated square roots.

Next circumscribe a hexagon and continue to 96 sides. �

In decimal notation, my calculator says that

3
10
71

=
223
71

≈ 3.14085 < π ≈ 3.14159 < 3
1
7

=
22
7
≈ 3.14286.

4. On the Sphere and the Cylinder

The two volume work entitled On the Sphere and the Cylinder is Archimedes
undisputed masterpiece, probably regarded by Archimedes himself as the apex of his
career. These two volumes are constructed in a manner similar to Euclid’s Elements,
in that it proceeds from basic definitions and assumptions, through simpler known
results, onto the new discoveries of Archimedes.

Among the results in this work are the following. This first describes the surface
area of a sphere in terms of the area of a circle, thus comparing area to area.

Proposition 3. The surface of any sphere is equal to four times the greatest circle
in it.

Technique of Proof. Double reductio ad absurdum: assumption that the area is
more leads to a contradiction, as does assumption that the area is less. One needs
to understand the area of a cone to accomplish these estimates (why?). �

Let us translate this into modern notation. Let r be the radius of the sphere and
let S be its surface area. Then the radius of the greatest circle in it is πr2. Thus
Archimedes shows that

S = 4πr2.

The next proposition describes the volume of a sphere in terms of the volume of
a cone.

Proposition 4. Any sphere is equal to four times the cone which has its base equal
to the greatest circle in the sphere and its height equal to the radius of the sphere.

Note that again, Archimedes has expressed the volume of the sphere in terms
of the volume of a known solid; this is because the Greeks did not have modern
algebraic notation. Using modern notation, we let r be the radius and let V be
the volume of the sphere. The volume of the cone of radius r and height r, as
determined by Eudoxus, is 1

3πr3. Thus

V =
4
3
πr3.
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In this way, Archimedes found the relationship between the circumference con-
stant p, the area constant k (in Measurement of a Circle), and the volume constant
m: We have

C = pD, A = kD2, , and V = mD3,

and Archimedes has shown (in modern notation) that

C = πD (that is, p = π)

A = πr2 = π
(D

2

)2

=
π

4
D (so k =

π

4
)

V =
4
3
πr3 =

4
3
π
(D

2

)3

=
π

6
πD3 (so m =

π

6
)

From here, Archimedes now describes an astounding discovery.
Suppose we have a sphere of radius r, surface area S, and volume V . Inscribe

this sphere in a right circular cylinder, whose radius would also be r and whose
height would be 2r. Then the surface area Acyl of the cylinder is simply the areas
of the base and top circle, plus the area of the rectangle which forms the tube of
the cylinder:

Acyl = 2(πr2) + (2πr)(2r) = 6πr2.

Thus
Acyl : Asph = (6πr2) : (4πr2) = 3 : 2.

Moreover, the volume of the cylinder is the area of the circular base times the
height:

Vcyl = (πr2)(2r) = 2πr3.

Again, we have

Vcyl : Vsph = (2πr3) : (
4
3
πr3) = 3 : 2.

This so intrigued Archimedes that he requested that his tombstone be engraved
with a sphere inscribed in a cylinder, together with the ratio 3 : 2. Apparently,
Marcellus, the conqueror of Syracuse, was so impressed with Archimedes, that he
granted this wish.
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